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Abstract. The present paper expands on recent attempts at estimating the parameters of simple
interacting-agent models of financial markets [S. Alfarano, T. Lux, F. Wagner, Computational Economics
26, 19 (2005); S. Alfarano, T. Lux, F. Wagner, in Funktionsfähigkeit und Stabilität von Finanzmärkten,
edited by W. Franz, H. Ramser, M. Stadler (Mohr Siebeck, Tübingen, 2005), pp. 241–254]. Here we pro-
vide additional evidence by (i) investigating a large sample of individual stocks from the Tokyo Stock
Exchange, and (ii) comparing results from the baseline noise trader/fundamentalist model of [S. Alfarano,
T. Lux, F. Wagner, Computational Economics 26, 19 (2005)] with those obtained from an even simpler
version with a preponderance of noise trader behaviour. As it turns out, this somewhat more parsimonious
“maximally skewed” variant is often not rejected in favor of the more complex version. We also find that
all stocks are dominated by noise trader behaviour irrespective of whether the data prefer the skewed or
the baseline version of our model.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

After more than a decade of research on agent-based mod-
els in finance, estimation of the parameters of such mod-
els ranks high on the agenda of future research. However,
while basic stylized facts of financial data can be captured
to some extent by various microscopic models, estimation
of their parameters has hardly been tried in the literature.
A few exceptions include attempts at estimating models
of chartist/fundamentalist interaction as regime-switching
processes [1] and a heuristic estimation of the param-
eters of Kirman’s seminal ant model [2] with financial
data [3]. A very similar model has also been estimated by
Alfarano et al. [4,5]. In contrast to Kirman [2] and Gilli
and Winker [3], their model allows for asymmetric move-
ments between the two groups of the population (labeled
noise traders and fundamentalists). This generalization al-
lows for a broad range of unimodal or bimodal outcomes
of the distribution of the population together with almost
any degree of skewness in the pdf for the stationary dis-
tribution of group occupation numbers. Depending on the
underlying parameters, this model could give rise to dom-
inance of either noise traders or fundamentalists on av-
erage within a particular market together but would also
allow for intermittent deviations from the unconditional
mean of the population configuration. Alfarano et al. [4]
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derive closed-form solutions for the distribution of returns
of this model which enables them to estimate the param-
eters via a maximum likelihood fit for the unconditional
distribution. The results allow insights into whether —
within the framework of this particular model — the data
suggest a dominance of noise traders or fundamentalists
behaviour. As it turns out, noise traders seem to domi-
nate in stock markets [4], while fundamentalists dominate
in foreign exchange markets [5]. Here we expand on these
studies by applying the same tools to a larger ensemble of
stocks, namely 100 individual stocks for the Tokyo Stock
Exchange with daily records extending from 1975 to 2001.
As it turns out, the dominance of noise traders in stock
markets is also confirmed for each individual entry in this
data set. Inspired by this unequivocal finding, we also ex-
plore whether a more parsimonious version of our baseline
model would be sufficient to capture the main features of
the data. To this end, we develop an asymptotic bench-
mark of a “maximally skewed” process in which the ten-
dency of agents to switch from the fundamentalist group
to the noise trader group (parametrized by a Poissonian
transition rate ε1) by far dominates over movements in the
opposite direction (parametrized by a Poissonian transi-
tion rate ε2). We investigate how this extreme but simple
model performs in comparison to our benchmark case ex-
plored in [4] and [5]. As it turns out the more parsimonious
model with ε1 � ε2 cannot be rejected via likelihood ratio
tests for 40% of the stocks in our sample.
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2 The herding model and the artificial market

Our market is populated by a fixed number of traders N ,
belonging to two categories: (i) fundamentalists, who buy
or sell according to the deviation between the actual price
p and the fundamental value pF and (ii) noise traders who
are subject to “irrational” fads or moods as introduced in
the seminal paper by De Long et al. [6]. The basic build-
ing block of our model is a herding mechanism among
investors inspired by the recruitment-infection model in-
troduced by Kirman [2]. We formalize this approach as a
jump Markov process in continuous time. For sufficiently
small time increments ∆τ , at most one agent will change
its type. The resulting increase or decrease of group occu-
pation numbers can be formalized by the following condi-
tional transition probabilities ρ(·|·):

ρ(n + 1, t + ∆τ |n, t) = (N − n)(a1 + bn)∆τ,

ρ(n − 1, t + ∆τ |n, t) = n
(
a2 + b(N − n)

)
∆τ, (1)

where n and N − n are the respective numbers of noise
traders and fundamentalists. The constant parameters
a1, a2 and b specify the behaviour of the investors. The
transition probabilities in equation (1) are composed of
two terms: the first term, which is linear in the number of
investors in the state, governs the idiosyncratic propen-
sity to switch to the other strategy. The major differ-
ence to Kirman’s model is that we allow for asymmet-
ric transition rather than assuming a common constant
a for the autonomous switching probabilities. Note that
this enables us to generate dynamics with an arbitrary
degree of asymmetry and dominance of one group over
the other. The second term in the transition rates cap-
tures the herding tendency, since it is proportional to the
product of the number of agents in the opposite state,
i.e. (N − n) or n. The constant b is a parameter for the
strength of the herding behaviour. For finite but large N ,
the dynamics of the discrete variable n can be approx-
imated by a Fokker-Planck equation expressed in terms
of the intensive variable z = n

N , with drift and diffusion
functions given by:

A(z) = a1−(a1+a2)z and D(z) = 2b(1−z)z. (2)

Introducing two simple behavioural rules for the noise
traders’ and fundamentalists’ excess demand, we can re-
late the composition of the population of the investors in
the market to the log-returns of the market price. Funda-
mentalists’ excess demand is assumed to be given by:

EDF = (N − n) ln
pF

p
, (3)

which means that they react with a proportional increase
of excess demand to deviations between the supposed fun-
damental value (pF ) and the current market price (p).
Noise traders’ aggregate excess demand takes the form:

EDC = −r0nξ, (4)

where the stochastic variable ξ represents the current ag-
gregate ‘mood’ of the noise traders, n is the number of

noise traders and r0 is a constant which is used for scaling
their contribution to aggregate excess demand vis-à-vis
the fundamental component. The negative sign on the
right-hand side of equation (4) is simply chosen for no-
tational convenience. Our noise traders are close in spirit
to the original contribution of De Long et al. [6] in that
they are characterized by random misperceptions rather
than systematic trend following or other heuristic trading
rules. Within a Walrasian scenario, we can compute the
equilibrium price by setting total excess demand equal to
zero, which yields to the following formula for the market
price:

p = pF exp
(

r0
z

1 − z
ξ

)
. (5)

The variables z and 1− z in equation (5) are the fractions
of the noise traders and fundamentalists among agents, re-
spectively. While we concede that prevalence of a market
clearing equilibrium might be too restrictive of an assump-
tion for high-frequency data, we also conjecture that price
adjustment speed is high enough to prevent large imbal-
ances between demand and supply for daily data. Thus,
we believe that the temporary equilibrium assumption of
equation (5) is not too much at odds with empirical ob-
servations. Assuming for simplicity that the fundamental
value does not change over time, the log-returns can be
expressed as (see [4]):

r(t, ∆t) = r0

(
z(t + ∆t)

1 − z(t + ∆t)
ξ(t + ∆t) − z(t)

1 − z(t)
ξ(t)

)
.

(6)
Assuming that ξ(t) changes much faster than the popula-
tion configuration, this can be approximated by:

r(t, ∆t) = r0
z(t)

1 − z(t)
(ξ(t + ∆t) − ξ(t))

= σ(t) η(t, ∆t), (7)

where r0 is a constant of proportionality, σ(t) = z(t)
1−z(t) is

the volatility (depending on the population composition)
and η(t, ∆t) is an IID random variable with mean zero.
Equation (7) turns out to be analytically tractable, pro-
viding us with closed-form solutions for a wide range of
conditional and unconditional properties of returns (equi-
librium distribution and autocorrelation function of abso-
lute returns). The equilibrium distribution for the volatil-
ity σ is given by:

p(σ) =
1
r0

1
B(ε1, ε2)

(
σ

r0

)ε1−1 (
r0

σ + r0

)ε1+ε2

, (8)

where ε1,2 ≡ a1,2
b and B(·, ·) is the Beta function. If we

normalize the time series of returns according to the con-
dition E[|rt|] = 1, the constant r0 can be expressed as a
function of the two behavioural parameters ε1 and ε2:

r0 =
ε2 − 1

ε1

1
E[|η|] . (9)

Under the previous normalization and in the limit ε1 �
1, the probability density of equation (8) converges to a
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Fig. 1. Comparison of the equilibrium distribution of the
volatility σ (Eq. (8)) for increasing values of the parameter
ε1 and its asymptotic distribution in the case ε1 � 1 given by
equation (10).

non-degenerate distribution:

p∞(σ) =
1

Γ (ε2)
1
k

(
k

σ

)ε2+1

· exp
(
−k

σ

)
, k ≡ ε2 − 1

E[|η|] ,

(10)
which is the inverse Gamma distribution. Interestingly,
the inverse Gamma is the resulting stationary distribution
of well-known stochastic volatility models introduced in
the literature on financial mathematics [7,8]. The deriva-
tion can be found in Appendix A. Note that neglecting
changes of the fundamental value in equation (6) can be
justified by the dominance of the noise trading contribu-
tion, i.e. p(σ), whose regular variation with index ε2 would
constitute the dominant component to the pdf of returns
as long as changes of fundamental value would have tails
decaying faster than with a power of ε2 (which would be
the case for Normally distributed changes of fundamen-
tals and a broad range of other distribution functions).
Figure 1 shows the convergence of the distribution (8) to
its asymptotic form (10). Assuming that the noise η is
uniformly distributed1, it is also possible to compute the
pdf of absolute returns, see [4], which takes the form:

p(|r|) =
1
r0

ε2

ε1 − 1

[
1 − β

( |r|
|r| + r0

; ε1 − 1, ε2 + 1
)]

,

(12)
where β(·; ·, ·) is the incomplete Beta function. The lim-
iting case ε1 � 1 of equation (10) leads to the following
parametric family for the distribution of absolute returns:

p∞(|r|) =
1
2

ε2

ε2 − 1
Γ

(
ε2 + 1,

2(ε2 − 1)
|r|

)
, (13)

1 Under this assumption the normalization factors, k and r0,
are:

r0 =
2(ε2 − 1)

ε1
, k = 2(ε2 − 1) . (11)

Table 1. Summary of the estimation results for the entire
sample of 100 stocks. The entries for ε∞ refer to the asymptotic
version of the model based on equation (13). The last row
reports the descriptive statistics of the estimates for which the
likelihood ratio test does not reject the limiting case of the
model at a p-value of 2.5%.

Mean Std Median Max Min

ε1 17.8 12.6 14.4 75 6.0
ε2 4.3 0.7 4.2 6.4 2.9
ε∞ 3.5 0.3 3.5 4.2 2.7
ε∞,p 3.4 0.3 3.4 4.1 2.7

where Γ (·, ·) is the incomplete Gamma function — see
Appendix B.

The average percentage of noise traders in the mar-
ket is E[z] = ε1

ε1+ε2
. Therefore, a very large value of the

parameter ε1 is an indication of a market that is mostly
dominated by noise traders.

3 Estimation of the parameters

Given equations (12) and (13), we can estimate the pa-
rameters of the model, ε1 and ε2. We apply the Maximum
Likelihood procedure as explained in [4]. The focus of our
present estimation exercise is to test whether the model
based on the two parameters in equation (12) performs
better than its limiting asymptotic version in describing
the unconditional distribution of financial returns. The
aim is to see whether an even simpler model of interact-
ing agents with an overwhelming tendency towards noise
trading would work as well as our more elaborate baseline
framework to describe the returns distribution. In order
to do so, we estimate the parameters for a large ensem-
ble of financial data, consisting of 100 stocks from the
Japanese market at daily sampling intervals with a time
horizon ranging from January 4th 1975 to December 28th
2001. Table 1 summarizes the results of our estimation
exercise and Figure 2 illustrates the empirical distribution
of the estimates across the whole pool of stocks. The ML
estimation procedure for the case of two parameters, (ε1

and ε2) is applied with the constraint ε1 ≤ 100. For 6
out of the entire sample of 100 stocks, the previous con-
straint is binding. The descriptive statistics in Table 1 re-
fer to the sample without those 6 cases. Using likelihood
ratio tests, we can compare the relative performance of the
two-parameter model and its limiting version for ε1 � 1.
It turns out that in 40 out of 100 cases2, the asymptotic
version cannot be rejected. Interestingly, even in the case
of non-rejection of the two-parameter model, the condi-
tion ε1 > ε2 holds for all the considered time series. These
results confirm and extend our previous finding [4] of stock
markets being dominated by noise traders. The condition
ε1 > ε2 seems to be a salient feature of stock market

2 The p-value of the test is fixed at 2.5%.
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Fig. 2. The four panels show the histograms of the estimates. Panel (A) and (B) refer to the parameters ε1 and ε2 respectively,
without the 6 cases of binding constraints in the ML procedure. Panel (C) shows the histogram for the estimates of the parameter
ε2 in the limiting case ε1 � 1 as given by equation (13) and labeled as ε∞. Panel (D) shows the distribution of the estimates
of parameter ε2 for those cases for which the asymptotic model cannot be rejected at a p-value of 2.5%, labeled as ε∞,p.

data since it emerges as a robust feature of all applica-
tions of our model. Interestingly, using exchange rates in-
stead of stock market data, we observe the opposite case,
namely a market dominated by fundamentalists as in [5].
We might, therefore, conclude that the model can cap-
ture some underlying difference in the two categories of
financial time series. Within the framework of our model,
the higher degree of fluctuations of stock markets vis-à-vis
foreign exchange markets would have to be attributed to
a dominance of noise traders’ activity in the former. It
might seem natural that the higher volatility (in terms of
the relative range of fluctuations) of stock markets against
foreign exchange markets is attributed to a larger number
of noise traders in the former within a behavioural finance
setting.

However, note that different measures of volatility ex-
ist and stock and foreign exchange markets appear equally
volatile under many of them (e.g. tail index estimates).
Nevertheless, the naked eye sees a lower range of fluctua-
tions in the foreign exchange markets as illustrated in [5].
This translates into relatively subtle differences of distri-
butions, for which no clear concept of measurement exists
so far, but which are apparently detected by our model.
Hence, while we have an intuitive explanation of the dif-
ferent findings for both types of markets, the details of
how this explanation is borne out by our estimates are far
from trivial.

4 Conclusion

In the present paper, we have estimated the parameters
of a very simple interacting-agents model of financial mar-
ket dynamics. As it turns out, the Japanese stock market
data unanimously speak in favor of the dominance of noise
traders in the pertinent time series. In a large number of

cases, we were not even able to reject the extreme version
of the model with a dominant tendency of adherence to
the noise trader group among agents. One would certainly
like to investigate how robust these results are by varying
the details of the traders’ behaviour and the design of the
market process. Unfortunately, there is not much hope
that one might arrive at similar ‘nice’ closed-form solu-
tions with more complicated models. Furthermore, while
we think that these results are interesting as a first ap-
proach towards estimation of agent-based models, estima-
tion based on an unconditional distribution is certainly
not fully satisfactory. As the next step, one should try
to estimate the parameters via full maximum likelihood,
taking into consideration the underlying Markov process
resulting from agents’ strategy choices. This would enable
one to estimate probabilities for occupation numbers from
which forecasts of volatility could be computed.

We thank the comments presented by two anonymous referees.
Financial support by the European Commission under STREP
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Appendix A: Asymptotic distribution
of the volatility for ε1 � 1

We start by rearranging the components of equation (8):

p(σ) =
Γ (ε1 + ε2)
Γ (ε1) εε2

1

kε2

Γ (ε2)
1

(
k

ε1σ + 1
)ε1

· 1
(
σ + k

ε1

)ε2 · 1
σ

. (A.1)
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Under the condition ε1 � 1, the first term converges to 1,
the third term converges to exp(− k

σ ) and the forth term
converges to σ−ε2 . Therefore the overall distribution con-
verges to the expression given by equation (10).

Appendix B: Asymptotic distribution
of the absolute returns for ε1 � 1

The unconditional distribution of the absolute returns,
|r| = v, can be computed by the following formula:

p∞(v) =
∫ ∞

0

p (v | σ) p∞(σ) dσ, (B.1)

where the conditional probability p(v|σ) takes the form:

p(v|σ) =
{

0 if v > σ
1
σ if v < σ,

(B.2)

due to the uniform distribution of the variable η. Plugging
equation (10) into equation (B.1) yields:

p∞(v) =
1

Γ (ε2)
1
k2

∫ ∞

v

(
k

σ

)ε2+2

· e− k
σ dσ. (B.3)

Under the change of variable u = k
σ , the previous integral

takes the form:

p∞(v) =
1

Γ (ε2)
1
k

∫ k
v

0

uε2 e−u du. (B.4)

Equation (13) is then obtained using the definition of the
incomplete Gamma function:

Γ (ε, x) =
1

Γ (ε)

∫ x

0

uε−1e−udu. (B.5)

Note that equation (13) can also be derived as a limiting
case of equation (12) for ε1 � 1.

Appendix C: Data description

In the following we provide the list of identification
numbers of the 100 stocks used in the paper:

T1301 T1332 T1333 T1351 T1352 T1501 T1503 T1515
T1518 T1601 T1603 T1661 T1701 T1801 T1802 T1804
T1806 T1808 T1810 T1812 T1813 T1814 T1815 T1816
T1817 T1818 T1819 T1820 T1821 T1822 T1823 T1824
T1826 T1827 T1829 T1833 T1834 T1835 T1836 T1837
T1838 T1839 T1847 T1851 T1852 T1855 T1858 T1860
T1861 T1863 T1865 T1866 T1881 T1882 T1883 T1884
T1885 T1886 T1888 T1889 T1890 T1893 T1895 T1896
T1898 T1917 T1920 T1921 T1922 T1923 T1924 T1925
T1926 T1928 T1941 T1942 T1943 T1945 T1948 T1949
T1950 T1951 T1954 T1955 T1957 T1958 T1959 T1960
T1961 T1962 T1963 T1967 T1968 T1969 T1970 T1971
T1972 T1974 T1975 T1979.
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